La confianza se forja en la cercanía también con la inteligencia artificial. ¿Por dónde empezar si trabajamos en Recursos Humanos? El proceso de iniciación es determinante para que la curva de aprendizaje progrese adecuadamente y, en este sentido, McKinsey ha aplicado dos criterios de decisión para identificar cuatro áreas de experimentación con las que empezar a explorar esta tecnología con claros indicadores de eficiencia.
Como si de un proceso incremental se tratara, «trastear» con la IA ha de ser un camino de menos a más. En concreto, la generativa propone una aproximación amigable en la medida en que el lenguaje de interacción con ella no es numérico sino alfabético. Con esta primera dificultad superada (aunque sometida constantemente a nuestra excelencia con los prompts), los expertos de McKinsey plantean cuatro procesos de RR.HH. con los que es fácil empezar a trabajar porque:
- se pueden aplicar con relativa rapidez, y
- suponen un esfuerzo de programación mínimo, un poca personalización de los sistemas, las bases de datos y las herramientas de la organización.
Con estos dos criterios en mente han recogido cuatro ejercicios prácticos que facilitan un acercamiento amigable a esta tecnología cuya promesa de eficiencia podemos tangibilizar cuanto mejor la entendamos. Los cuatro casos de uso se corresponden, además, con el valor potencial que tienen en el ámbito de los procesos de gestión de talento y que McKinsey ha inferido de su investigación:
Contenidos (generación): Por ejemplo, para el reclutamiento. Generar texto e imágenes a través de la IA generativa es un proceso sencillo para:
- formular nuevas ofertas de trabajo basadas en perfiles de habilidades, palabras clave o ofertas antiguas;
- adaptar publicaciones según el contexto;
- redactar comunicaciones personalizadas con los candidatos.
El mayor valor potencial de la IA generativa en recursos humanos (alrededor del 20 por ciento) será para los procesos de la adquisición, el reclutamiento y la incorporación de talento.
- Concisión (documental): Por ejemplo, para resumir y extraer información de fuentes de datos no estructurados que ayuden a mejorar los procesos de gestión del desempeño. Mejorar los procesos de gestión de personas y talentos representa otro 20 por ciento del potencial de valor de la IA generativa en RR.HH.
- Comunicación (y aprendizaje): Por ejemplo, para fomentar el compromiso de los empleados a través de la comunicación directa y el intercambio con un chatbot. La IA generativa está ayudando poner en valor toda la base de conocimientos de la función RH para guiar a los empleados a través de recorridos personalizados y mejorar así la eficiencia y la experiencia individual. La combinación del aprendizaje y el desarrollo continuos con recomendaciones de aprendizaje personalizado impulsadas por la IA representa un 12 por ciento adicional del potencial de valor generativo de la IA.
- Codificación: Por ejemplo, para interpretar de datos y generar código de programación que respalden el análisis de los datos sobre las personas. La unificación de los datos corporativos sobre los empleados más el uso de otras muchas diferentes fuentes de información están permitiendo a las empresas analizar una gran cantidad de datos e identificar patrones y conexiones de manera integral. La implementación de IA generativa para el análisis y la planificación organizacional representa el 15 por ciento del valor potencial en la función RH.